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Abstract. In this article, a family of models approximating the primitive equations of the atmosphere, which are
known to be the fundamental equations of the atmosphere, is presented. The primitive equations of the atmosphere
are used as a starting point and asymptotic expansions with respect to the Rossby number are considered to
derive the nth-order approximate equations of the primitive equations of the atmosphere. Simple global models
of the atmosphere are obtained. These higher-order models are linear and of the same form (with different right-
hand sides, depending on the lower-order approximations) as the (first-order) global quasi-geostrophic equations
derived in an earlier article. From a computational point of view, there are two advantages. Firstly, all the models
are linear, so that they are easy to implement. Secondly, all order models are of the same form, so that, with slight
modifications, the numerical code for the (first-order) global quasi-geostrophic model can be employed for all
higher-order models. From a physical point of view, higher-order models capture more physical phenomena, such
as the meridional flows, even though they are small in magnitude. Of course, there are still many subtle issues
involved in this project, such as the convergence of the asymptotics; they will be addressed elsewhere. The article
is concluded by a presentation of numerical simulations based on these models.
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Introduction

The general equations describing the motion and state of the atmosphere are very complicated.
To solve these equations numerically is still one of the great challenges in weather forecasting.
Simplified models are usually introduced for numerical computations [1–4].

There are two essential characteristics of the atmosphere which are used in simplifying
these equations. The first one is that, for large-scale geostrophysical flows, the ratio between
the vertical and the horizontal scales is very small; this leads to the primitive equations for the
atmosphere [5–15].

Another small parameter is the Rossby number " = Ro, which is the ratio of the speed of
(horizontal) wind to the speed of rotation of the earth around the polar axis. For the atmosphere
this number is of order 1/50.

In [10] the authors considered asymptotic expansions of the primitive equations of the
atmosphere with respect to the Rossby number and derived a very simple global-circulation
model of the atmosphere, the global quasi-geostrophic model (GQG), for which the equations
of motion for the wind and the temperature are linear evolution equations similar to the linear
Stokes equations. In particular, the following results were proved:

– the zeroth order motions are independent of the longitude, wind traveling exactly towards
east or west, and

– the first-order equations are linear.
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238 T. Tachim Medjo et al.

In comparison with the classical mid-latitude (mesoscale) quasi-geostrophic theory ([1–3,
11–13]), the Coriolis parameter is an order-1 function, and the �-plane assumption is no longer
used (see [11]). It should be noted that we do not expand the Coriolis parameter in terms of
the Rossby number ", and that we retain the spherical geometry of the earth.

Compared to some important parameters in the primitive equations of the atmosphere
such as the viscosity, which may be very small for some realistic flows, the Rossby number
is still a relatively large constant. Moreover, even though the meridional component of the
wind is relatively small by comparison with the zonal component, the meridional flow is also
extremely important in numerical weather prediction.

The objectives of this article are twofold. Firstly, we want to validate numerically the
GQG model derived in [10] by purely mathematical arguments (asymptotic expansions);
we address this question in Section 4. Then we want to derive and study the higher-order
approximations of the global geostrophic asymptotics, leading to higher-order models, and
retaining the meridional motion of the general circulation.

The new idea here is to decompose properly the solution (vn; T n) of the nth-order approx-
imation; we write:

vn = evn + !n; T n = eT n + T n
�

:

Here (!n; T n
�

) is determined by lower-order approximations, and (evn; eT n) satisfies the same
equations (with different right-hand sides, involving lower-order approximations) as the (first-
order) global geostrophic equations. Although the derivation procedure is somewhat involved,
the final equations for solving (evn; eT n) and calculating (!n; T n

�

) are, surprisingly, very natural
and simple. Some advantages of these higher-order models are as follows:

(a) the equations are linear and of the same form as the first-order equations. Therefore,
they are relatively easy to implement. With little extra work on the right-hand sides that
involve only lower-order approximations, the same numerical code as for the (first-order)
GQG applies to all the higher-order approximations. Of course, special attention is still
needed to handle the difficulties at the poles (see [16]);

(b) the higher-order models capture the meridional motion in a simple way. This is important
from a numerical-weather-prediction point of view.

As in [10], we present our global geostrophic expansion for the PEs on the whole globe.
However, we would like to emphasize that, as in all geostrophic theories, the global geostrophic
model introduced in [10] and in the present article has limitations in the tropical region, owing
to the degeneracy of the Coriolis parameter at the equator.

The article is organized as follows: In the first section, we recall from [10] the primitive
equations of the atmosphere and the global quasi-geostrophic equations of the atmosphere.
In Section 2 we study the second-order approximate equations in the asymptotic expansions
with respect to the Rossby number. Section 3 generalizes the previous method to the nth-order
approximate equations, for any integer number n. Section 4 is devoted to the presentation of
some numerical simulations that use these models.

1. The primitive equations (PEs)

In this section, we briefly recall from [10] the primitive equations of the atmosphere and the
global quasi-geostrophic equations.
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High-order approximation equations 239

We start with the formulation of the nondimensional PEs which we obtain by integrating
the diagnostic equations in the pressure direction. In this context the equations read (see [10]
for details):

"

�
@v

@t
+rvv �W (v)

@v

@�

�
+ fk � v +r�s +rM(T=K2) + "L1v = 0;

"�

�
@

@t
+rv �W (v)

@

@�

�
T �

W (v)

K2
+ "L2T = "Q;

div
Z 1

0
v d� = 0:

9>>>>>>>>=
>>>>>>>>;

(1.1)

The initial and boundary value conditions are:

@v

@�
= s(v � vs);

@T

@�
= �s(T � Ts); for � = 0;

@v

@�
= 0;

@T

@�
= 0; for � = 1; u = (v; T ) = u0 = (v0; T0); at t = 0;

9>>>=
>>>;

(1.2)

where u0 = (v0; T0) is a given function (initial data).
The notations used above are as follows (see [10] for more details):

(1) The nondimensional pseudo-spatial domain is given by

M = S2 � (0; 1);

with coordinate system (�; '; �). Here, � is the colatitude (0 6 � 6 �); ' is the longitude
(0 6 ' 6 2�), and � is the nondimensional pressure

� = (P � p)=(P � p0);

0 < p0 < P , representing the top of the atmosphere and the surface of the earth.
(2) The unknown functions are the 2D horizontal velocity v, the temperature T , and the

geopotential �s on the surface of the earth (� = 0), i.e. the value of � = gz at the isobar
p = P located above the surface of the earth. The vertical velocity ! =W (v) is given by

W (v) = �div M�v:

(3) The linear operators L1 and L2, representing the dissipation, are given by

L1 = �
1

Re1
��

1
Re2

@

@�

�
K1

@

@�

�
; L2 = �

1
Rt1

��
1

Rt2

@

@�

�
K1

@

@�

�
:

We use�;r, div to denote the 2D horizontal (in � and ' directions) Laplacian, gradient,
and divergence operators. The averaging operatorsM and M� are given by

M	 =

Z �

0
	 d�0; M�	 =

Z 1

�
	 d�0:

(4) The parameters Re1;Re2;Rt1;Rt2; s and �s are positive constants, K1 = K1(�) is a
smooth positive function, Ts and vs are given functions. The nondimensional parameter
" is the Rossby number defined by

" =
V

2
a
;
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V being the typical horizontal velocity of the wind, 
 the angular velocity of the earth,
and a the radius of the earth.

We now recall the global geostrophic asymptotics introduced in [10]. The basic idea behind
the global geostrophic asymptotics is that, for the planetary-scale atmosphere (the horizontal
scale is of order of a, the radius of the earth), the Coriolis parameter f is an order-1 function.
It has to be treated as a variable function, and the �-plane in classical geostrophic asymptotics
is no longer valid. Hence, as we mentioned in the introduction, we do not expand f in terms
of the Rossby number ".

We proceed as follows (see [10] for more details) and set formally

v = v0 + "v1 + "2v2 + � � � ; T = T 0 + "T 1 + "2T 2 + � � � ;

� = �0 + "�1 + "2�2 + � � � ; �s = �0
s + "�1

s + "2�2
s + � � � :

)
(1.3)

Substituting formally (1.3) in (1.1)–(1.2), we obtain (see [10]) the following approximate
equations of the PEs:

(a) Zero-order approximation. At the zeroth order, O(1), we have (see [10])

fk � v0 +r�0 = 0; div
Z 1

0
v0 d� = 0;

div
Z 1

0
v0 d�0 = 0; �0 = �0

s +M(T 0=K2);

9>>>=
>>>;

(1.4)

which gives

fk � v0 +r�0 = 0; div v0 = 0; T 0 = K2
@�0

@�
: (1.5)

(b) First-order approximation. At the level O(") we have:

@v0

@t
+rv0v0 + fk � v1 +r�1 + L1v

0 = 0;

�

�
@

@t
+rv0

�
T 0 +

divM�v1

K2
+ L2T

0 = Q;

div
Z 1

0
v1 d� = 0; T 1 = K2

@�1

@�
; �1 = �1

S +M(T 1=K2):

9>>>>>>>>=
>>>>>>>>;

(1.6)

Regrouping (1.5) and (1.6) as in [10], we find the following global quasi-geostrophic Equa-
tions (1.7)–(1.9):

@v0

@t
+rv0v0 + fk � v1 +r�1 + L1v

0 = 0;

�

�
@

@t
+rv0

�
T 0 +

div M�v1

K2
+ L2T

0 = Q;

9>>>=
>>>;

(1.7)

div v0 = 0; fk � v0 +r�0 = 0; T 0 = K2
@�

@�
; (1.8)

div
Z 1

0
v1 d� = 0; T 1 = K2

@�1

@�
; (1.9)
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with the initial and boundary value conditions:

@v0

@�
= s(v

0 � v0
s);

@T 0

@�
= �s(T

0 � T 0
s ) at � = 0;

@v0

@�
= 0;

@T 0

@�
= 0 at � = 1; (v0; T 0)jt=0 = (v0

0 ; T
0
0 ):

9>>>=
>>>;

(1.10)

It is proven in [10] that v0
� vanishes identically and that v0

' and T 0 are independent of the
longitude'. Consequently, the global quasi-geostrophic equations can be rewritten as follows:

@v0
'

@t
+ L1v

0
' = �fv1

�; �
@T 0

@t
+ L2T

0 = Q�
1
K2

Z 1

�

1
sin �

@(v1
� sin �)
@�

d�0; (1.11)

v0 = v0
'e' =

1
f

@�0

@�
e'; T 0 = K2

@�0

@�
; �0 is independent of '; (1.12)

Z 1

0

1
sin �

@(v1
� sin �)
@�

d�0 = 0: (1.13)

The boundary and initial conditions are deduced from (1.10) by integration in ':

@v0

@�
= s(v

0 � v0
s);

@T 0

@�
= �s(T

0 � T
0
s); at � = 0;

@v0

@�
= 0;

@T 0

@�
= 0; at � = 1; (v0; T 0) = (v0

0 ; T
0
0 ); at t = 0;

9>>>=
>>>;

(1.14)

(v0
0 ; T

0
0 ) being a function independent of ' which we have to prescribe (to choose), based

on an asymptotic expansion similar to (1.3), of the initial data v0; T0 in (1.2). In the above
equations,

Q = Q(�; �; t) =
1

2�

Z 2�

0
Q(�; '; �; t) d'; (1.15)

is a given function. The operators L1 and L2 are defined by

L1v
0
' = �

1
Re1

 
1

sin �
@

@�

 
sin �

@v0
'

@�

!
�

v0
'

sin2 �

!
�

1
Re2

@

@�

 
K1

@v0
'

@�

!
;

L2T
0 = �

1
Rt1 sin �

@

@�

 
sin �

@T 0

@�

!
�

1
Rt2

@

@�

 
K1

@T 0

@�

!
:

9>>>>>=
>>>>>;

(1.16)

In (1.11)–(1.14), v1
� is the Lagrange multiplier of the constraint (1.12). The existence and

uniqueness of solutions of the global quasi-geostrophic Equations (1.11)–(1.14) is studied in
detail in [10].
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2. Second-order approximate equations

Based on the methodology used in [10], we now derive the second-order approximate equa-
tions. Throughout this section, we suppose that the solution (v0

'; T
0) of the global quasi-

geostrophic Equations (1.11)–(1.14) is sufficiently regular. More generally, all functions are
assumed to be sufficiently regular.

At the level O("2) we have (thanks to the zeroth and first-order results):

"
@v1

@t
+rv1v0 +rv0v1 �W (v1)

@v0

@�
+ fk � v2 +r�2 + L1v

1

#
= 0;

�

"
@T 1

@t
+rv0T 1 +rv1T 0 �W (v1)

@T 0

@�

#
�
W (v2)

K2
+ L2T

1 = 0;

9>>>>>=
>>>>>;

(2.1)

div
Z 1

0
v2 d� = 0; T 2 = K2

@�2

@�
; �2 = �2

S +M(T 2=K2); (2.2)

with the initial and boundary conditions

@v1

@�
= s(v

1 � v1
s);

@T 1

@�
= �s(T

1 � T 1
s ); at � = 0;

@v1

@�
= 0;

@T 1

@�
= 0; at � = 1; (v1; T 1)jt=0 = (v1

0 ; T
1
0 ):

9>>>>=
>>>>;

(2.3)

Hereafter, we derive a simplified form of the second-order approximate Equations (2.1)–(2.3),
which is similar to the global quasi-geostrophic Equations (1.11)–(1.14).

From the second equation in (1.7), we have

div v1 = g1 = g1(�; '; �; t); (2.4)

where

g1 =
@

@�

 
K2

 
L2T

0 + �
@T 0

@t
�Q

!!
: (2.5)

Now let !1 = !1(�; '; �; t) be such that

div !1 = g1: (2.6)

We set ev1 = v1 � !1, so that div ev1 = 0. Moreover, from the first equation in (1.7), we have

fk � v1 +r�1 = h1 = h1(�; '; �; t); (2.7)

where

h1 = �L1v
0 �

@v0

@t
�rv0v0: (2.8)

engi671.tex; 19/11/1997; 8:02; v.7; p.6



High-order approximation equations 243

Let 	1 = 	1(�; '; �; t) be such that

fk � !1 +r	1 = h1: (2.9)

Then e�1 = �1 �	1 and ev1 = v1 � !1 satisfy

fk � ev1 +re�1 = 0; div ev1 = 0; (2.10)

which gives (exactly as in [10]),

ev1
� = 0; ev1

' =
1
f

@ e�1

@�
; e�1 is independent of ': (2.11)

Let eT 1 = T 1 � T 1
�

, where T 1
�

= K2(@	
1=@�). Then, from (1.9) we have eT 1 =

K2(@ e�1=@�). Finally, we obtain

ev1
� = 0; ev1

' =
1
f

@ e�1

@�
; eT 1 = K2

@ e�1

@�
; e�1 is independent of ': (2.12)

By using the change of variables

ev1 = v1 � !1; eT 1 = T 1 � T 1
�

; e�1 = �1 �	1 (2.13)

and dropping all e, we can rewrite (2.1)–(2.3) in the form (2.14)–(2.16) as follows:

@v1

@t
+rv1v0 +rv0v1 + fk � v2 +r�2 + L1v

1 = P 1;

�
@T 1

@t
+ �rv0T 1 + �rv1T 0 + L2T

1 �
W (v2)

K2
= R1;

9>>>=
>>>;

(2.14)

v1
� = 0; v1

' =
1
f

@�1

@�
; T 1 = K2

@�1

@�
; �1 is independent of '; (2.15)

div
Z 1

0
v2 d� = 0; T 2 = K2

@�2

@�
; �2 = �2

S +M(T 2=K2): (2.16)

We supplement (2.14)–(2.16) with the following initial and boundary-value conditions:

@v1

@�
= s(v

1 � ev1
s);

@T 1

@�
= �s(T

1 � eT 1
s ); at � = 0;

@v1

@�
= ev1

b ;
@T 1

@�
= eT 1

b ; at � = 1; (v1; T 1)jt=0 = (ev1
0 ;
eT 1

0 ):

9>>>>=
>>>>;

(2.17)

Here ev1
s ;
eT 1
s ; ev1

b ;
eT 1
b ; ev1

0 ;
eT 1

0 , are given and defined from (2.3) and (2.13) by:

ev1
s = v1

s +
1
s

@!1

@�
� !1; eT 1

s = T 1
s +

1
�s

@T 1
�

@�
� T 1

�

;

ev1
b = �

@!1

@�
; eT 1

b = �
@T 1

�

@�
; ev1

0 = v1
0 � !1; eT 1

0 = T 1
0 � T 1

�

:
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In (2.14), P 1 and R1 are defined by:

P 1 = �
@!1

@t
�rw1v0 �rv0!1 +W (!1)

@v0

@�
� L1!

1;

R1 = ��
@T 1

�

@t
� �rv0T 1

�

� �r!1T 0 + �W (!1)
@T 0

@�
� L2T

1
�

:

Moreover, we have:

rv1v0 = �v1
'v

0
' cot �e�; rv0v1 = �v0

'v
1
' cot �e�; rv0T 1 = rv1T 0 = 0:

Then (2.14) can be rewritten as follows:

@�2

@�
� 2v1

'v
0
' cot � � fv2

' = P 1
� ; �

@T 1

@t
�
W (v2)

K2
+ L2T

1 = R1;

@v1
'

@t
+ fv2

� +
1

sin �
@�2

@'
+ L1v

1
' = P 1

':

9>>>>>>=
>>>>>>;

(2.18)

As in [10], let us integrate (2.18) with respect to the longitude variable ' over the interval
(0; 2�); we obtain

@v1
'

@t
+ L1v

1
' + fv2

� = P
1
';

�
@T 1

@t
+ L2T

1 +
1
K2

Z 1

�

1
sin �

@

@�
(v2

� sin �) d�0 = R
1
;

9>>>>=
>>>>;

(2.19)

v1
' =

1
f

@�1

@�
; v1

� = 0; T 1 = K2
@�1

@�
; �1 is independent of '; (2.20)

Z 1

0

1
sin �

@

@�
(v2

� sin �) d�0 = 0; (2.21)

where

v2
� =

1
2�

Z 2�

0
v2
� d'; R =

1
2�

Z 2�

0
R d'; P

1
' =

1
2�

Z 2�

0
P 1
' d':

The initial and boundary conditions read:

@v1

@�
= s(v

1 � v1
s);

@T 1

@�
= �s(T

1 � T
1
s); at � = 0;

@v1

@�
= v1

b;
@T 1

@�
= T

1
b; at � = 1; (v1; T 1)jt=0 = (v1

0; T
1
0);

9>>>>=
>>>>;

(2.22)

where v1
s; T

1
s; v

1
b; T

1
b; v

1
0; T

1
0, are obtained by integration of (2.17) with respect to ', that is:

v1
s =

1
2�

Z 2�

0
ev1
s d'

and so on.
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REMARK 2.1. At the level O("2), the solution of the second-order approximate Equa-
tions (2.1)–(2.3) is given by (v1 + !1; T 1 + T 1

�

). 2

We can prove the existence and uniqueness of solutions of (2.19)–(2.22) using the mathe-
matical framework developed in [10], with the assumptions that the solutions (v0

'; T
0) of the

global quasi-geostrophic Equations (1.11)–(1.14) are sufficiently regular.

3. (n+ 1)th-order approximate equations

In this section, we generalize the results obtained in the previous section to the general
(n + 1)th-order approximate equations, where n is any integer. The approximate equations
obtained are important from a numerical point of view, because they provide a simple way to
compute the components (vk; T k) in the asymptotic expansions (1.3).

At the level O("n+1) we obtain:

"n+1

"
@vn

@t
+

nX
k=0

 
rvn�kv

k �W (vn�k)
@vk

@�

!
+ fk � vn+1 +r�n+1 + L1v

n

#

+"n
"
@vn�1

@t
+

n�1X
k=0

 
rvn�1�kvk �W (vn�1�k)

@vk

@�

!
+ fk � vn +r�n + L1v

n�1

#

...
...

...

...
...

...

+"

"
@v0

@t
+rv0v0 + fk � v1 +r�1 + L1v

0

#
+ [fk � v0 +r�0] = O("n+2):

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(3.1)

"n+1

"
�
@T n

@t
+ �

nX
k=0

 
rvn�kT

k �W (vn�k)
@T k

@�

!
�
W (vn+1)

K2
+ L2T

n

#

+"n
"
�
@T n�1

@t
+ �

n�1X
k=0

 
rvn�1�kT k �W (vn�1�k)

@T k

@�

!
�
W (vn)

K2
+ L2T

n�1

#

...
...

...

...
...

...

+"

"
�
@T 0

@t
+ �rv0T 0 + �rv0T 0 � �W (v0)

@T 0

@�
�
W (v1)

K2
+ L2T

0

#
�
W (v0)

K2

= "Q+O("n+2);

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;
(3.2)
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div
Z 1

0
(v0 + "v1 + "2v2 + � � � "n+1vn+1) d� = O("n+2);

T n+1 = K2
@�n+1

@�
; �n+1 = �n+1

S +M(T n+1=K2):

9>>>=
>>>;

(3.3)

From the previous order approximate equations (at the orders up to n), we obtain the
following (n+ 1)th-order approximate Equations (3.4)–(3.6):

@vn

@t
+

nX
k=0

 
rvn�kv

k �W (vn�k)
@vk

@�

!
+ fk � vn+1 +r�n+1 + L1v

n = 0;

�
@T n

@t
+ �

nX
k=0

 
rvn�kT

k �W (vn�k)
@T k

@�

!
�
W (vn+1)

K2
+ L2T

n = 0;

9>>>>>>=
>>>>>>;

(3.4)

div
Z 1

0
vn d� = 0; T n = K2

@�n

@�
; �n = �n

S +M(T n=K2); (3.5)

div
Z 1

0
vn+1 d� = 0; T n+1 = K2

@�n+1

@�
; �n+1 = �n+1

S +M(T n+1=K2); (3.6)

with the initial and boundary value conditions

@vn

@�
= s(v

n � vns );
@T n

@�
= �s(T

n � T n
s ); at � = 0;

@vn

@�
= 0;

@T n

@�
= 0; at � = 1; (vn; T n) = (vn0 ; T

n
0 ); at t = 0:

9>>>=
>>>;

(3.7)

Using the previous approximate equations (approximate equations up to the order n), we can
rewrite (3.4) into the form:

@vn

@t
+rvnv

0 +rv0vn �W (vn)
@v0

@�
�W (v0)

@vn

@�

+fk � vn+1 +r�n+1 + L1v
n = An;

�
@T n

@t
+ �rvnT

0 + �rv0T n �W (vn)
@T 0

@�
�W (v0)

�
@T n

@�
�
W (vn+1)

K2
+ L2T

n = Bn;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(3.8)

where An; Bn are known from the previous approximate equations and are defined by:

An = �
n�1X
k=1

 
rvn�kv

k �W (vn�k)
@vk

@�

!
;

Bn = �
n�1X
k=1

 
rvn�kT

k �W (vn�k)
@T k

@�

!
:
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Let us also recall that, from the nth approximate equations, we have

@vn�1

@t
+

n�1X
k=0

 
rvn�1�kvk �W (vn�1�k)

@vk

@�

!
+ fk � vn +r�n + L1v

n�1 = 0;

�
@T n�1

@t
+ �

n�1X
k=1

 
rvn�1�kT k �W (vn�1�k)

@T k

@�

!
�
W (vn)

K2
+ L2T

n�1 = 0;

9>>>>>>=
>>>>>>;

(3.9)

which gives

fk � vn +r�n = hn; div vn = gn: (3.10)

Here

hn = �
@vn�1

@t
�

n�1X
k=0

 
rvn�1�kvk �W (vn�1�k)

@vk

@�

!
� L1v

n�1; (3.11)

and

gn =
@

@�

"
K2

 
�
@T n�1

@t
+ �

n�1X
k=0

 
rvn�1�kT k �W (vn�1�k)

@T k

@�

!
+ L2T n�1

!#
; (3.12)

are known from the previous approximate equations.
Exactly as for the second-order approximate equations, let !n = !n(�; '; �; t) be such

that

div !n = gn: (3.13)

We set evn = vn � !n, then div evn = 0. Let 	n = 	n(�; '; �; t) be such that

fk � !n +r	n = hn: (3.14)

Then e�n = �n �	n, satisfies

fk � evn +re�n = 0; div evn = 0; (3.16)

which gives (exactly as in [10])

evn� = 0; evn' = 1
f

@ e�n

@�
; e�n is independent of ': (3.17)

Let eT n = T n�T n
�

, whereT n
�

= K2(@	
n=@�). Then from (3.5), we have eT n = K2(@ e�n=@�).

Finally, we obtain

evn� = 0; evn' = 1
f

@ e�n

@�
; eT n = K2

@ e�n

@�
; e�n is independent of ': (3.18)
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By using the change of variables

evn = vn � !n; eT n = T n � T n
�

; e�n = �n �	n; (3.19)

and dropping all e, we can rewrite the (n+ 1)th-order approximate equations as

@vn

@t
+rvnv

0 +rv0vn + fk � vn+1 +r�n+1 + L1v
n = P n;

�
@T n

@t
+ �rvnT

0 + �rv0T n + L2T
n �

W (vn+1)

K2
= Rn;

9>>>=
>>>;

(3.20)

vn� = 0; vn' =
1
f

@�n

@�
; T n = K2

@�n

@�
; �n is independent of ': (3.21)

div
Z 1

0
vn+1 d� = 0; T n+1 = K2

@�n+1

@�
; �n+1 = �n+1

S +M(T n+1=K2): (3.22)

The initial and boundary value conditions are as follows:

@vn

@�
= s(v

n � evns ); @T n

@�
= �s(T

n � eT n
s ); at � = 0;

@vn

@�
= evnb ; @T n

@�
= eT n

b ; at � = 1; (vn; T n)jt=0 = (evn0 ; eT n
0 );

9>>>=
>>>;

(3.23)

where evns ; eT n
s ; evnb ; eT n

b ; evn0 ; eT n
0 , are known and are defined from (3.7) and (3.19) by:

evns = vns +
1
s

@!n

@�
� !n; eT n

s = T n
s +

1
�s

@T n
�

@�
� T n

�

;

evnb = �
@!n

@�
; eT n

b = �
@T n

�

@�
; evn0 = vn0 � !n; eT n

0 = T n
0 � T n

�

:

In (3.20), P n and Rn are defined by:

P n = An �
@!n

@t
� L1!

n �r!nv
0 �rv0!n +W (!n)

@v0

@�
;

Rn = Bn � �
@T n

�

@t
� L2T

n
�

� �r!nT
0 � �rv0T n

�

+ �W (!n)
@T 0

@�
:

Moreover, we have:

rvnv
0 = �vn'v

0
' cot �e�; rv0vn = �v0

'v
n
' cot �e�; rv0T n = rvnT

0 = 0:

Then (3.20) can be rewritten as follows:

@�n+1

@�
� 2vn'v

0
' cot � � fvn+1

' = P n
� ;

@vn'

@t
+ L1v

n
' + fvn+1

� +
1

sin �
@�n+1

@'
= P n

' ;

�
@T n

@t
+ L2T

n �
W (vn+1)

K2
= Rn:

9>>>>>>>>>=
>>>>>>>>>;

(3.24)
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As in [10], let us integrate (3.21)–(3.24) with respect to the longitudinal variable ' over
the interval (0; 2�). We obtain

@vn'

@t
+ fvn+1

� + L1v
n
' = P

n
';

�
@T n

@t
+ L2T

n +
1
K2

Z 1

�

1
sin �

@

@�
(vn+1

� sin �) d�0 = R
n
;

9>>>>=
>>>>;

(3.25)

evn' = 1
f

@�n

@�
; vn� = 0; T n = K2

@�n

@�
; �n is independent of '; (3.26)

Z 1

0

1
sin �

@

@�
(vn+1

� sin �) d�0 = 0; (3.27)

where

vn+1
� =

1
2�

Z 2�

0
vn+1
� d'; P

n
' =

1
2�

Z 2�

0
P n
' d'; R

n
=

1
2�

Z 2�

0
Rn d':

The initial and boundary conditions read:

@vn

@�
= s(v

n � vns );
@T n

@�
= �s(T

n � T
n
s ); at � = 0;

@vn

@�
= vnb ;

@T n

@�
= T

n
b ; at � = 1;

(vn; T n) = (vn0 ; T
n
0 ); at t = 0;

9>>>>>>>=
>>>>>>>;

(3.28)

where vns ; T s; v
n
b ; T

n
b ; v

n
0 ; T

n
0 , are obtained by integration of (2.26) with respect to ', that is:

vns =
1

2�

Z 2�

0
evns d'

and so on.
We can prove existence and uniqueness of solutions of (3.25)–(3.28) by using the mathe-

matical framework developed in [10] with the assumptions that the solutions (vk'; T
k); k < n

of the previous approximate equations are sufficiently regular.

4. Numerical solutions

In this section, we present some numerical solutions of the stationary form of the second-order
approximate Equations (2.19)—(2.22) given by the system (4.5)–(4.8) below. We compare
these solutions of the stationary form of the global quasi-geostrophic equations given by
(4.1)–(4.4):

L1v
0
' + fv1

� = 0; L2T
0 +

1
K2

Z 1

�

1
sin �

@(v1
� sin �)
@�

d�0 = Q; (4.1)
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v0 = v0
'e' =

1
f

@�0

@�
e'; T 0 = K2

@�0

@�
; �0 is independent of '; (4.2)

Z 1

0

1
sin �

@(v1
� sin �)
@�

d�0 = 0; (4.3)

with the boundary conditions

@v0

@�
= s(v

0 � v0
s);

@T 0

@�
= �s(T

0 � T
0
s); at � = 1;

@v0

@�
= 0;

@T 0

@�
= 0; at � = 1:

9>>>>=
>>>>;

(4.4)

The stationary case of the second-order approximate Equations (2.23)–(2.26) is given by

L1v
1
' + fv2

� = P
1
'; L2T

1 +
1
K2

Z 1

�

1
sin �

@

@�
(v2

� sin �) d�0 = R
1
; (4.5)

v1
' =

1
f

@�1

@�
; v1

� = 0; T 1 = K2
@�1

@�
; �1 is independent of '; (4.6)

Z 1

0

1
sin �

@

@�
(v2

� sin �) d�0 = 0; (4.7)

with the boundary conditions

@v1

@�
= s(v

1 � v1
s);

@T 1

@�
= �s(T

1 � T
1
s); at � = 0;

@v1

@�
= v1

b;
@T 1

@�
= T

1
b; at � = 1:

9>>>>=
>>>>;

(4.8)

Let us introduce as in [10] the functions

�0 = �0(�; �; t) =

Z 1

�
v1
�(�

0) d�0; �1 = �1(�; �; t) =

Z 1

�
v2
�(�

0) d�0

and the new variable � = 1 � �. Then, in the new coordinate system (�; '; �), we can check
as in [10] that (4.1)–(4.4) is equivalent to (4.9)–(4.10) given by:

L1v
0
' + f

@�0

@�
= 0; L2T

0 +
1

K2 sin �
@

@�
(�0 sin �) = Q;

@

@�
(fv0

') +
@(T 0=K2)

@�
= 0;

9>>>=
>>>;

(4.9)

@v0
'

@�
= s(v

0
s � v0

');
@T 0

@�
= �s(T

0
s � T 0); at � = 1;

@v0
'

@�
= 0;

@T 0

@�
= 0; at � = 0:

9>>>>=
>>>>;

(4.10)
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We can also check that (4.5)–(4.8) is equivalent to (4.11)–(4.12) given by:

L1v
1
' + f

@�1

@�
= P

1
'; L2T

1 +
1

K2 sin �
@

@�
(�1 sin �) = R

1
;

@

@�
(fv1

') +
@(T 1=K2)

@�
= 0;

9>>>=
>>>;

(4.11)

@v1
'

@�
= s(v

1
s � v1

');
@T 1

@�
= �s(T

1
s � T 1); at � = 1;

@v1
'

@�
= �v1

b ;
@T 1

@�
= �T

1
b; at � = 0;

9>>>>=
>>>>;

(4.12)

where

L1v' = �
1

Re1

�
1

sin �
@

@�

�
sin �

@v'

@�

�
�

v'

sin2 �

�
�

1
Re2

@

@�

�
K1

@v'

@�

�
;

L2T = �
1

Rt1 sin �
@

@�

�
sin �

@T

@�

�
�

1
Rt2

@

@�

�
K1

@T

@�

�
:

To discretize the systems (4.9)–(4.10) and (4.11)–(4.12), we use the latitude-longitude grid
with constant interval.

Let �� be the latitude grid step, �' the longitude grid step, �� the vertical grid step. Let
I;K be two integer numbers; we set

�� =
�

(I + 1)
; �� =

1
(K + 1)

; �' = ��; h = (��;�';��);

�i = i��; �k = k��; vi;k = v(�i; �k); Ti;k = T (�i; �k):

The Arakawa’s C-grid for the global quasi-geostrophic Equations (4.1)–(4.2) is defined as
follows:

� is defined at the points (�i; �k);

v is defined at the points (�i; �k�(1=2));

T is defined at the points (�i�(1=2); �k):

(4.13)

The following figure shows a sample of grid points.

Figure 4.1. Arakawa’s C-grid in the (�; �) direction.
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The linear operatorsL1; L2; @=@�; @=@� are approximated by the centered finite-difference
scheme of second order at the points (i; k � 1

2); (i �
1
2 ; k); (i; k); (i; k), respectively. The

corresponding finite-difference operators are denoted by L1;h; L2;h;r�;h;r�;h, respectively.
The linear systems corresponding to (4.9)–(4.10) and (4.11)–(4.12) are solved with Uzawa’s
conjugate-gradient method. Roughly speaking, we follow these steps:

� Solve the finite dimensional system associated with (4.9)–(4.10) by means of Uzawa’s
conjugate-gradient method and a change of unknown functions similar to that proposed
in [16].

� Compute !1 and 	1 which satisfy (2.6) and (2.7), respectively. Then, set T 1
�

=
K2(@	

1=@�).

� Compute the right-hand side (P
1
'; R

1
) of (4.11) and the functions v1

s; T
1
s; v

1
b ; T

1
b that

appear in the boundary conditions (4.12) and use the formula given in (2.17).
� Solve the finite dimensional system associated with (4.11)–(4.12) by means of Uzawa’s

conjugate-gradient method and the change of unknown functions similar to that proposed
in [16].

� Compute (v0 + "v1; T 0 + "T 1), which is the second-order approximation of (v; T ) in the
asymptotic expansion (1.3).

For the numerical simulations, we used the following data

Q = Q = �H(cos �)G(p); (4.14)

where

H(x) = 1� 0 � 477(3
2x

2 � 1
2); G(p) =

�

2
sin
�
�(P � p)

(P � p0)

�
;

where � is a nondimensional constant indicating the intensity of the heating and p is the
pressure variable. The heating term Q is chosen according to [17].

The grid sizes and the Reynolds numbers are given by

�� = �' =
�

61
; �� = 1

21 ; � = 1; Re1 = Re2 = Rt1 = Rt2 = 10:

Let us recall that in (1.4), the function K1(�) is defined by

K1(�) =

 
pT 0

PT

!
; p = P � (P � p0)�;

where T satisfies

c2 = R

 
RT

cp
� p

@T

@p

!
= constant; T (P ) =

P

�R
:

Here, P; p0; R; cp; � and T 0 are given constants (see [5], [10]).
As noted in [5], T can be considered as the climate-average value of the temperature on

isobaric surfaces.
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For different values of the vertical distribution of the standard temperature T , the following
figures show the latitude-height cross section of the temperature and the zonal wind.

First case. T satisfies:

100 = R

 
RT

cp
� p

@T

@p

!
:

Figures 4.2 and 4.3 show the latitude-height cross section of the temperature for the first and
the second-order approximate equations, respectively.

Figures 4.4 and 4.5 show the latitude-height cross section of the zonal wind for the first
and the second-order approximate equations, respectively.

Figure 4.2. Latitude-height cross-section of the zon-
ally averaged temperature: T 0.

Figure 4.3. Latitude-height cross-section of the zon-
ally averaged temperature: T 0 + "T 1.

Figure 4.4. Latitude-height cross-section of the zon-
ally averaged zonal wind: v0

'.
Figure 4.5. Latitude-height cross-section of the zon-
ally averaged zonal wind: v0

' + "v1
'.

Figure 4.6. Latitude-height cross-section of the zon-
ally averaged temperature: T 0.

Figure 4.7. Latitude-height cross-section of the zon-
ally averaged temperature: T 0 + "T 1.
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Figure 4.8. Latitude-height cross-section of the zon-
ally averaged zonal wind: v0

'.
Figure 4.9. Latitude-height cross-section of the zon-
ally averaged zonal wind: v0

' + "v1
'.

Figure 4.10. Latitude-height cross-section of the zon-
ally averaged meridional wind: "v1

� .
First case

Figure 4.11. Latitude-height cross-section of the zon-
ally averaged meridional wind: "v1

� .
Second case.

Second case. T satisfies:

225 = R

 
RT

cp
� p

@T

@p

!
:

Figures 4.6 and 4.7 show the latitude-height cross section of the temperature for the first
and the second-order approximate equations, respectively.

Figures 4.8 and 4.9 show the latitude-height cross section of the zonal wind for the first
and the second order approximate equations, respectively.

Figures 4.10 and 4.11 show the latitude-height cross section of the zonally averaged
meridional wind for the second-order approximate equations.

The results obtained with the first- and the second-order models are comparable in shape
and magnitude as far as zonal velocity and temperature are concerned. Moreover, they show
for these quantities several of the observed features of the real atmosphere and the CCM2
model (see [4], [16]). In fact, in the lower part of the atmosphere, the general tendency is for
the atmosphere to decrease with height. This region, called troposphere, is the portion of the
atmosphere in direct contact with the earth’s surface. Above the troposphere, the temperature
generally stays constant or increases with height. This portion of the atmosphere is called
stratosphere. The division between the two regions is the tropopause, [18]. Figures 4.2, 4.3,
4.6 and 4.7 show that the first- and second-order models reproduce the main patterns of the
atmosphere. Moreover, the tropopause is located at nearly 200 K, which is in agreement with
the real atmosphere as well as the simulations obtained with the CCM2 model ([4], [16]).

The main difference between the simulations of the first- and the second-order approximate
equations appears in Figures 4.10 and 4.11, which represent the meridional wind "v1

� obtained
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with the second-order approximate equations. It should be noted that in the first-order approx-
imation, the meridional component of the velocity is equal to zero (i.e. v0

� = 0), whereas, as
can be seen in the Figures 4.10 and 4.11, the meridional component of the velocity "v1

� in the
second model is sufficiently significant to justify the model: it reaches the magnitude 0 �126
in the tropaupose for " = 0�02.

Let us also point out that, when the constant � is large (i.e. the intensity of the heating term
is large), let us say 103, the term ("v1; "T 1) becomes very large.

Conclusions

We had two objectives in this article. The first one was to validate numerically the quasi-
geostrophic model derived in [10] by purely mathematical asymptotic analysis. We have been
able, with the very simple model of [10] to recover the general features of the atmosphere
climate, namely the zonal wind and the temperature, as computed by the much more refined
and expensive CCM2 model (a full three-dimensional simulation of the primitive (Navier-
Stokes-type) equations).

The second objective was to improve the model in [10] by the introduction of the second-
(and higher-) order approximation(s) in the asymptotic expansions with respect to ". With the
second-order approximation we recover again the general features concerning the zonal wind
and the temperature, which are valid for both the CCM2 model and the model introduced
in [10]. We find also a significant nonzero meridional wind which does not exist in the model
in [10].

By considering asymptotic expansions of the primitive equations of the atmosphere with
respect to the Rossby number, we derived a series of simple equations for the nth-order
approximations of the primitive equations of the atmosphere. We showed that the nth-order
approximate equations can be rewritten in a form similar to the global quasi-geostrophic
equation derived in [10]. It was shown in [10] that the (first-order) global quasi-geostrophic
equations are linear, and that at the first order, wind travels toward east or west. Using the
second-order approximation, we recovered the meridional motion, even though it is small in
magnitude as expected.

From the computational point of view, since the (first-order) global quasi-geostrophic
equations are linear, it is relatively easy to simulate the flow, with special care needed only for
the difficulty caused by the singularities at the poles.

The second- and higher-order models are in the same form as the global quasi-geostrophic
model with different right-hand sides depending on the approximate solutions of the previous
orders. Therefore, it is also relatively easy for us to implement these higher-order models,
using the subroutines developed for the first-order approximation. Although we did not verify
this, we anticipate that the higher-order approximations should provide better approximations
of the real atmospheric flow or, more precisely, the solutions of the primitive equations.

The simulations we obtain resemble in a number of respects the simulations obtained by
the NCAR CCM2, which is a well accepted standard in meteorology. Indeed, our models
simulate the troposphere, the stratosphere and tropopause. The location of the tropopause
is roughly the same as that derived from the CCM2 model [4]. This provides a numerical
justification of the Rossby asymptotics we employed in this article. Notice, however, that the
magnitudes of our simulated fields are different from the magnitudes of the corresponding
fields obtained with the CCM2 model. This main difference may be attributed to the choice
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of physical parameters (such as the heating term) used in our simulations, which are different
from the ones used for the CCM2 simulations.

At this point, we are not able to conclude that (v0 + "v1; T 0 + "T 1) will always give a
better approximation of the solution of the primitive Equation (1.1)–(1.2) than (v0; T 0) is.
Moreover, it appears in some cases that ("v1; "T 1) is large compared to (v0; T 0), particularly
when the magnitude of the heating term Q increases through the constant � in (4.14). The
physical validity of the GQG model from [10] and of the present higher-order model will be
investigated elsewhere.

In conclusion, we have shown that, by taking into account suitable physical aspects of the
problem, we can obtain information on a flow without the need of large-scale computations.
Of course, this does not preclude the utilization of very large computations when more details
are needed or for the validation of simpler models.
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